A Dynamics Model of Rotor Blades for Real-time Helicopter Simulation
نویسندگان
چکیده
We present a dynamics model of rotor blades for real-time helicopter simulation. Collisions between the air flow and the moving blades make helicopters fly. In aerodynamics, or even in computer simulations, they precisely analyzed the collisions between the fluid(air) and the solid object(blades), and calculated the differential equations from the collisions. Thus, it was hard for them to generate real-time helicopter motions due to massive computations for calculating the equations. In this paper, we start from a geometric model of rotor blades, which reflects the characteristics of real world blades due to the various factors from helicopter aerodynamics, although some factors should be simplified to show real-time behaviors. Based on this geometric model, we present a dynamics model for calculating the forces due to the rotor blades colliding with air flows. Our dynamics model interprets the collisions between the fluid and the solid objects as the action-reaction forces, as originally Newton did. Finally, we present the force equations suitable for the existing rigid-body simulation systems, instead of fluid-dynamics equations. We implement a prototype system for helicopter motions, and it shows sufficient real-time processing behavior with ordinary PC’s.
منابع مشابه
Improved Mathematical Model for Helicopters Flight Dynamics Applications
The purpose of this paper is concerned with the mathematical model development issues, necessary for a better prediction of dynamic responses of articulated rotor helicopters. The methodology is laid out based on mathematical model development for an articulated rotor helicopters, using the theories of aeroelastisity, finite element and the time domain compressible unsteady aerodynamics. The he...
متن کاملHelicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network
The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for understanding the rotor performance and blade condition. A discussion on the dual character of blades as rot...
متن کاملComputational-Fluid-Dynamics- and Computational-Structural-Dynamics-Based Time-Accurate Aeroelasticity of Helicopter Rotor Blades
A modular capability to compute dynamic aeroelastic characteristics of rotor blades using the Euler/Navier– Stokes flow equations and finite element structural equations is presented. The approach is based on a time-accurate analysis procedure that is suitable for nonlinear fluid–structure interaction problems. Fluids and structural solvers are time-accurately coupled in the C++ environment. Un...
متن کاملCoupled Flap-Lag-Torsional Vibration Analysis of Pre-twisted Non-uniform Helicopter Blades
An approximate numerical mthod is presented for analysis and determination of modal characteristics in straight, pretwisted non-unifom helicopter blades. The analysis considers the coupled flapwise bending (out of plane), chordwise bending (in plane), and torsion vibration of both rotating and non-rotating blades. The proposed method is based on the integral expansion of Green functions (struct...
متن کاملHover Flight Helicopter Modelling and Vibrations Analysis
In this work, different modelling aspects of helicopter aerodynamics are discussed. The helicopter model is on Sikorsky configuration, main rotor in perpendicular combination with a tail rotor. The rotors are articulated and their blades are rigid. The main rotor implementation takes into account flap, lag and feather degrees of freedom for each of the equispaced blades as well as their dynamic...
متن کامل